

AFRL-IF-RS-TR-2005-257
Final Technical Report
July 2005

HIGH PRODUCTIVITY COMPUTING SYSTEMS
ANALYSIS AND PERFORMANCE

University of Southern California at Marina del Rey

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. N856

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-257 has been reviewed and is approved for publication

APPROVED: /s/

CHRISTOPHER FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
 Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2005

3. REPORT TYPE AND DATES COVERED
Final Jun 02 – May 04

4. TITLE AND SUBTITLE
HIGH PRODUCTIVITY COMPUTING SYSTEMS ANALYSIS AND
PERFORMANCE

6. AUTHOR(S)
Robert F. Lucas

5. FUNDING NUMBERS
C - F30602-02-1-0181
PE - 62301E
PR - N856
TA - HP
WU - CS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California/ISI
4676 Admiralty Way
Suite 1001
Marina del Rey California 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-257

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Christopher Flynn/IFTC/(315) 330-3249/ Christopher.Flynn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Due to its focus on performance, the Defense High Performance Computing (HPC) community has always had a need
for performance measurement, evaluation, and comparison. Nevertheless, there have been no widely accepted
standards for measuring the performance of HPC systems, much less their productivity when applied to the unique
computational challenges facing Defense scientists and engineers as well as operational users.
In coordination with MITRE and Lincoln Laboratory, the University of Southern California's Information Sciences Institute
(ISI) led an effort to begin addressing this issue in support of DARPA's High Productivity Computing Systems (HPCS)
program. This final report describes how ISI formed a team of experts that helped enable the HPCS program to
determine Defense high performance computing needs. It then describes how ISI and its subcontractors, in a
supplementary effort, initiated the HPCS phase two development time and execution time productivity activities. The
outcome of this project was a new understanding of the various components of the productivity of Defense. HPC
systems together with a methodology for measuring productivity from both the prspective of application developers as
well as users of HPC systems. In addition, a new set of HPCS benchmarks were developed, including a set of discrete
mathematics kernels.

15. NUMBER OF PAGES
59

14. SUBJECT TERMS
High Performance Computing, High Productivity Computing, Metrics, Benchmarks

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1. Executive Summary ... 1
2. Introduction .. 3
3. Initial HPCS Analysis Effort ... 4

3.1 Forming the HPCS Analysis Team ... 4
3.2 Developing HPCS Productivity Metrics and Methodology 5

4. HPCS Supplementary Effort... 11
4.1 Benchmarking.. 12
4.2 HPCS Community Web Site ... 14
4.3 Development Time .. 15
4.4 Execution Time.. 20

5. Ongoing and Future Work.. 22
6. Publications ... 24
7. Personnel.. 25

7.1 ISI Research Staff:... 25
7.2 Subcontractor Research Staff .. 25

8. Results, Conclusions & Technology Transfer26
9. Inventions, or patent disclosures ... 26
10. References ... 27
11. List of Acronyms .. 29
12. Appendices .. 30

Appendix A: January 2004 HPCS Productivity Workshop Agenda 30
Appendix B: Tiled Architecture Report from ISI East... 31
Appendix C: TopCrunch Report from UCSD .. 34
Appendix D: Development Time Report from UMD .. 37
Appendix E: Development Time Report from UCSD.. 43
Appendix F: Development Time Report from UCSB.. 44
Appendix G: Development Time Report from MIT .. 47
Appendix H: Report from NGC ... 50

 ii

List of Figures

FIGURE 1: THE FOUR-TIERED HPCS BENCHMARKING HIERARCHY. ... 12
FIGURE 2: EFFORT PERCENTAGE SPENT ON EACH ACTIVITY (USC595) ... 18
FIGURE 3: EVIDENCE FOR HYPOTHESIS2 FROM PILOT STUDY CMSC818S... 19
FIGURE 4: STEADY DEVELOPMENT (LEFT) VERSUS PANIC (RIGHT).. 19
FIGURE 5: DETAILED TOOL FLOW FOR APPLICATION SCALING AND SYSTEM MODELING. 21

List of Tables

TABLE 1: SOFTWARE RESOURCE ESTIMATES FOR THE LLNL AND LANL ASCI PROJECTS 6
TABLE 2: HPCS PHASE ONE BENCHMARKS .. 8
TABLE 4: HPCS CLASSROOM STUDIES SCHEDULE... 16
TABLE 3: HPCS MISSION PARTNER REPRESENTATIVE APPLICATIONS... 14

 1

1. Executive Summary

The Defense High Performance Computing (HPC) community has long had a need for
productivity metrics and methodologies for its computing systems. Unfortunately,
there are no widely accepted standards for measuring even the performance of HPC
systems (other then the discredited Linpack benchmark1) much less their productivity
when applied to the unique computational challenges facing Defense scientists and
engineers as well as operational users. In coordination with MITRE and Lincoln
Laboratory, the University of Southern California’s Information Sciences Institute (ISI)
undertook an effort to address the lack of HPC productivity metrics and methodology
as part of the Defense Advanced Research Projects Agency’s (DARPA) High
Productivity Computing Systems (HPCS) program.

ISI’s initial role in the HPCS program was to develop, in close coordination with
DARPA and the broader Defense computing community, an understanding of the needs
of the Defense computing community. There are differing requirements for application
developers, users of these applications, and the broad communities that must share
large-scale assets such as those provided by the High Performance Computing
Modernization Program (HPCMP). ISI accomplished this goal by studying the
requirements of a number of Defense users, developing the HPCS benchmarks with
MITRE, and representing these Defense needs to HPCS vendors and the broader
community at HPCS principle investigator meetings.

The second of ISI’s initial tasks was to organize a team that could define productivity
and develop a consensus for it within the broader HPC community. The team included
leading experts in the field from universities and the Defense industry. We leveraged
existing activities already supported by the Department of Energy (DOE), the National
Science Foundation (NSF), and of course, the Department of Defense (DOD). Along
with the broader HPCS community, the team helped to determine what aspects of
productivity were neither well defined nor measured, and proposed steps to rectify this.
These results were briefed to DARPA and at HPCS Principal Investigator (PI) meetings
thereby helping define the goals of the DARPA HPCS program’s second phase.

At the end of its first year, the DARPA HPCS program both down-selected to three
prime contractors and refocused its analysis and performance assessment team.
Looking towards the second phase of HPCS, there were two major concerns. The first
was to quantify the relative difficulty of developing Defense HPC software using
different programming models and tools (i.e., development time). The second was to
quantify the performance delivered by large-scale systems to specific Defense
applications (i.e., execution time).

In order to support DARPA during the transition to the second phase of the HPCS
program, the team was tasked to design for DARPA specific research projects whose
goal would be to address DARPA’s needs regarding metrics and methodologies for
quantifying development time and execution time productivity. The team reacted to
this charge by developing the HPCS execution time strategy in coordination with

 2

researchers at Lawrence Livermore National Laboratory (LLNL) and the University of
California at San Diego (UCSD). Researchers were engaged at the University of
Maryland (UMD) and other leading academic institutions to not only develop a
development time strategy, but to even conduct pioneering experiments to measure the
productivity of software developers when confronted with various parallel
programming methodologies.

The outcome of this project was a new understanding of the various components of the
productivity of Defense HPC systems together with a methodology for measuring
productivity from both the perspective of application developers as well as users of
HPC systems. Along the way, a new set of HPCS benchmarks was developed,
including a set of discrete mathematics kernels (see Table 2) released by the team.
Finally, by engaging many of the leaders of the US HPC community, the team helped
DARPA facilitate a broad consensus, maximizing the impact of its HPCS program.

 3

2. Introduction

The Defense High Performance Computing community has long had a need for
productivity metrics and methodologies for its computing systems. Unfortunately,
there are no widely accepted standards for measuring even the performance of HPC
systems (other then the discredited Linpack benchmark) much less their productivity
when applied to the unique computational challenges facing Defense scientists and
engineers as well as operational users. In coordination with MITRE and Lincoln
Laboratory, the University of Southern California’s Information Sciences Institute
undertook an effort to address the lack of HPC productivity metrics and methodology
as part of DARPA’s HPCS program.

ISI’s initial role in the HPCS program was to develop, in close coordination with
DARPA and the broader Defense computing community, an understanding of what the
needs of the Defense computing community are and to establish consensus within the
HPCS community as to what productivity is. The result of the first phase of the HPCS
Analysis project were briefed to DARPA and at HPCS PI meetings and helped define
the goals of DARPA’s HPCS phase two productivity team.

At the end of its first year, the DARPA HPCS program down-selected to three prime
contractors and refocused its analysis and performance assessment team. Looking
towards the second phase of HPCS, there were two major concerns. The first was to
quantify the relative difficulty of developing Defense HPC software using different
programming models and tools (i.e., development time). The second was to quantify
the performance delivered by large-scale systems to specific Defense applications (i.e.,
execution time). Our team responded by initiating the HPCS phase two development
time and execution time productivity projects.

The remainder of this final report describes how our team accomplished their goals, and
is organized as follows. ISI’s role the first phase of HPCS was primarily one of
coordination and leadership. Thus this report is more of a history than a recitation of
technical results. The initial project is discussed in Section 3, with the formation of the
HPCS Analysis team presented in Section 3.1 and with the development of HPCS
metrics and methodology described in Section 3.2. The supplementary effort is
discussed in Section 4, with benchmarking addressed in Section 4.1, the HPCS web site
in Section 4.2, development time activities presented in Section 4.3 and execution time
planning described in Section 4.4. The HPCS project is ongoing, and our team’s
activities in support of phase two are briefly outlined in Section 5. A list of
publications is contained in Section 6. The personnel involved in the HPCS Analysis
project are named in Section 7. This is followed by results, conclusions, and
technology transfer in Section 8. Inventions and patent disclosures, or rather the lack
thereof, is discussed in Section 9. References are provided in Section 10. Section 11
contains a list of acronyms, and finally, Section 12 contains the appendices.

 4

3. Initial HPCS Analysis Effort

The initial objective of the HPCS Analysis project was to determine the needs of the
Defense HPC users, the state-of-the-art of the field of HPC benchmarking and establish
a better consensus in the HPC community as to how productivity and value should be
defined. This was to be accomplished by organizing a team of experts from both
academe and industry. The next two sections describe how the HPCS Analysis team
was organized and what it accomplished. The authors used presentations to the
government, workshops, conference presentations, and other means to disseminate the
results to the Defense HPC community.

3.1 Forming the HPCS Analysis Team

ISI was initially asked to participate in the HPCS program to complement an effort that
Dr. Richard Games of MITRE was heading to represent the needs of the Defense HPC
community to the original five HPCS system vendors. MITRE has its own expertise in
areas such as reconnaissance. However, because of both the diversity of its mission as
well as security restrictions, no one person or organization can be familiar with the full
range of Defense needs. Therefore, ISI was added to the initial HPCS productivity
team both to bring its own expertise to bear as well as to reach out to others in industry
and academe where necessary. The subcontractors were chosen so as to complement
the skills of ISI and MITRE as well as to give voice to those parts of the Defense
community that under normal circumstances prefer to maintain their anonymity.

Many components of the Defense HPC community, and its colleagues in other
government agencies, operate with full public scrutiny, and are able to voice their needs
openly. For example, the Defense High Performance Computing Modernization
Program (HPCMP), while it does support classified computing, is primarily an
unclassified activity providing HPC infrastructure to support open research performed
in academe and at Defense laboratories. Therefore, HPCMP could forthrightly
represent its needs and those of its user’s to the HPCS program and its vendors. The
DOE’s Office of Science performs only unclassified research, so it too could represent
its own needs in public forums. Both HPCMP and DOE SC were (and continue to be)
overt and active HPCS “mission partners”.

There are also HPCS mission partners whose work is classified, and who are thus
unable to directly represent their computational requirements. Our team took this into
account and included investigators with appropriate access to visit these sensitive
organizations. These included Dr. Barbara Yoon as well as SGI and the Northrup-
Grumman Corporation (NGC). We were thus able to include in our findings the
requirements of the classified Defense community as well as the open, scientific and
engineering community.

The user communities discussed above tend to develop their own codes. However,
most HPC users, whether in the Defense community, or outside of it, use codes
developed by others. Most such codes come from government labs or independent

 5

software vendors (ISVs), and no study of Defense HPC requirements would be
complete without them. Furthermore, there has been an absence of a measure of the
throughput of critical full-scale applications in the last decade. Therefore, ISI
contracted with Professor David Benson of the University of California at San Diego
(UCSD) to develop a benchmark that measures the performance delivered to Defense
users by real a code. UCSD focused its efforts on the LS-DYNA2 code, which is the
principle computational bottleneck in the automotive mechanical computer-aided
engineering (MCAE) field. This code originated at LLNL and has many properties
similar to those of full-scale Defense applications.

In the first quarter of the HPCS Analysis project, much of ISI’s activity was directed
toward organizing the above team. Once the core team had been identified and brought
under contract, the real work of determining metrics and methodologies for defining the
productivity of HPCS systems could begin.

3.2 Developing HPCS Productivity Metrics and Methodology

An early goal of the HPCS program was to ascertain Defense HPC requirements so as
to be able to represent them to the HPCS vendors, none of whom support the full range
of Defense users. Visits were made to NSA and other intelligence agencies, DOE, and
LLNL. The latter were to discuss the needs of the nuclear weapons community.
Topics of discussion included both computing requirements as well as software
development practices.

Initial results regarding software development practices and methodologies were
presented at the HPCS PI meeting in Phoenix, AZ, in the last week of October, 2002.
The PI reported on software development practices at the NSA and DOE National
Nuclear Security Administration (NNSA) Labs. Commercial MCAE ISVs were
included for contrast. The center-piece of this report is the data shown in Table 1,
which depicts the six main nuclear weapon performance codes initiated by the NNSA,
along with an older, legacy code. The size of the codes, the average number of
programmers employed, the length of time the codes had been under development, and
a measure of their success are all provided. An important point is that NNSA multi-
physics codes contain hundreds of thousands of lines of code, are built by a dozen or
more scientists and engineers, and evolve over a period of many years. Note, in spite of
this investment, they are not all successful. Once these codes reach a level of maturity,
they are often run for months on end, and the biggest constraint on NNSA’s scientific
productivity tends to be their execution time. Because such codes are often used for
decades, the developers have to use very conservative languages and programming
models. Often they are limited to Fortran, C, and MPI.

 6

 LLNL LANL

Code Projects
ASCI

A ASCI B
Legacy

A

Antero
Code

Project

Shavano
Code

Project

Crestone
Code

Project

Blanca
Code

Project
Single Lines of Code 184000 640000 410550 300000 500000 314000 200000
Function Points (Eq. 1) 4800 6100 5400 2900 4800 2900 3774
Estimated schedule(Eq.4) 8.7 9.0 6.9 6.6 8.1 6.7 7.4
Project age (at initial
milestone due date) 3 9 N/A 4 3.5 8 8
Successful in achieving
initial ASCI Milestone No Yes N/A No No Yes No
Estimated staff
requirements (Eq.3) 22 27 24 14 22 14 18
real team size (1997-2002) 20 22 8 17 8 12 35

Table 1: Software Resource Estimates for the LLNL and LANL ASCI projects
(data from Dr. Douglass Post, Los Alamos National Laboratory)

NSA has application code teams of comparable size in terms of source code, people,
and duration. However, it also has a very different application development paradigm.
Often one person, working under tremendous time pressure, will develop a body of
code to perform what is best referred to as a mathematical experiment. Many times the
code is used only once, leading such programs to be called “Kleenex codes”. In this
latter, “lone researcher” mode of software development, the time to develop the code
can be the biggest constraint on overall productivity. The need to maximize
programmer productivity, together with the short life span of the Kleenex codes, allows
NSA developers to be early adopters of languages such as Unified Parallel C (UPC).

While MCAE companies often employ hundreds of people, the core development
teams tend to on the order of one to two dozen. Often, as with the NNSA and NSA
codes, there are one or two “heroes” who propel the overall team. Like the NNSA code
developers, MCAE programmers have to use conservative programming models that
run on a wide variety of platforms and can be expected to be supported many years in
the future. Thus, they tend to use Fortran and the Message Passing Interface (MPI).
Some of the newer codes are written with C++.

Another result of the early HPCS work was the development of a set of benchmarks
representing the Defense HPC computing workload with which the program could both
motivate its vendors and measure their progress. ISI collaborated with MITRE’s Dr.
David Koester on this effort. Together, ISI and MITRE developed a strategy of mixing
traditional computational-kernel benchmarks with full applications. The kernel
benchmarks were to be a spanning set of small codes that measured specific aspects of

 7

a computing system’s performance. There would also be a modest set of full
applications enabling vendors to study complete codes, including input and output
characteristics. The HPCS benchmarking strategy evolved over the course of the
project. Therefore, discussion of a later strategy is included in Section 4.1.

Table 2 contains the benchmarks that were chosen for HPCS in phase one. ISI and
MITRE chose the kernel benchmarks to represent computations that are critical to
Defense, and often unique to it. One and two-dimensional Fast Fourier Transforms
(FFT) were chosen to represent reconnaissance. Linear solvers were chosen to
represent science and engineering. A set of discrete mathematics codes used in
Defense procurements was chosen to represent a large part of the classified Defense
workload. Finally, a set of novel, graph analysis benchmarks was proposed to represent
the increasingly important Defense data analysis problem.

The first category of HPCS kernel benchmarks was one and two-dimensional FFTs.
The FFTW benchmark from MIT was chosen as it is widely known to the embedded
Defense HPC community. A two-dimensional FFT code written by MITRE’s Brian
Sroka was also included, to represent higher dimensional FFTs that also occur in the
workloads of the mission partners.

The second category of HPCS kernel benchmarks was linear solvers. The obvious
choice for a dense matrix solver is High Performance Linpack (HPL), which is widely
used throughout the HPCS community. As a benchmark for sparse solvers, the well
known conjugate gradient code from the National Aeronautics and Space
Administration’s (NASA) Advanced Supercomputing Division’s (NAS) Parallel
Benchmarks (NPB) was chosen.

 8

Benchmarks

Application Area Benchmark Type Name Source Additional Information

Signals 1D FFT FFTW Available on Web

Remote Sensing 2D FFT RT_2DFFT Available from MITRE Brian Sroka

Stockpile Stewardship Radiation Transport UMT2000 ASCI Purple LLNL Radiation Transport

 Unstructured Grids

 Eulerian Hydrocode SAGE3D ASCI Purple LANL Eulerian Physics.

 Adaptive Mesh SAIC IP

 Finite Difference Model CTH DoD HPCMP TI-03 SNL Engineering Physics

 Export Controlled

Ocean Forecasting Finite Difference Model NLOM DoD HPCMP TI-03

Army Future Combat
Weapons Systems Finite Difference Model CTH DoD HPCMP TI-03 Export Controlled

Biological TBD TBD TBD

Crashworthiness
Multi-physics Nonlinear
Finite Element LS-DYNA Available to Vendors Commercially Available

Linear Algebra
Lower / Upper Triangular
Matrix Decomposition LINPACK Available on Web Time to solution = 72 hours

 Conjugate Gradient NAS CG C DoD HPCMP TI-03
Solve Laplace's equation
on a cubic grid

Discrete Math
Global Updates per second
(GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI)

 Multiple Precision none Paper & Pencil Contact Bob Lucas (ISI)

 Dynamic Programming none Paper & Pencil Contact Bob Lucas (ISI)

Matrix Transpose
[Binary manipulation] none Paper & Pencil Contact Bob Lucas (ISI)

Integer Sort
[With large multiword key] none Paper & Pencil Contact Bob Lucas (ISI)

 Binary Equation Solution none Paper & Pencil Contact Bob Lucas (ISI)

Graphs
Graph Extraction
(Breadth First) Search none Paper & Pencil

 Sort a large set none Paper & Pencil

Construct a Relationship
Graph Based on Proximity none Paper & Pencil

Table 2: HPCS Phase One Benchmarks

 9

The discrete mathematics benchmarks are codes used by the intelligence community,
which were released to the HPCS program after DARPA and its contractors agreed to
obscure their source. They were released to the HPCS community as a set of six
discrete mathematics benchmarks. These codes stress a system’s ability to randomly
access large memories, and to compute on unusual operands ranging from single-bit
integers to very large, multi-precise integers. The most widely known of these codes is
RandomAccess, which randomly updates a very large array in memory, exposing the
main memory latency of modern microprocessors. The second benchmark measures
performance when multiplying multi-precise integer numbers. The third is a dynamic
programming kernel, which incorporates a comparison inside of a sparse matrix
multiply kernel. The fourth transposes the bits in a GF(2) matrix, and is designed to
reward vendors who have bit-matrix-multiply (BMM) function units. The fifth
benchmark is an integer sort. The final benchmark is the solution by Gaussian
elimination of a dense linear system over GF(2), again rewarding vendors who have
BMM instructions.

The final category of HPCS kernel benchmarks was graph analysis. These kernels
were designed to represent a class of problems of increasing importance to the
intelligence community. Three kernels were proposed: graph construction; sorting of
large sets; and clustering. At the end of the first phase of the HPCS Analysis project,
these only existed as pencil and paper specifications.

The choice of full application codes with which to represent the Defense workload was
also done as a collaboration with MITRE. MITRE surveyed the unclassified mission
partners and suggested the Navy’s NLOM ocean-modeling code together with
something to represent Biology. Meanwhile we worked with the NNSA labs. NNSA
politics required that each of LANL, LLNL, and Sandia National Laboratory (SNL) be
explicitly represented. We also insisted the codes selected be truly representative of the
workloads in the labs and not be selected to make statements with respect to the
performance NNSA achieves. In the end, the following choices were made.
UMT20003 was chosen as it was developed at LLNL and models a radiation transport
code. SAGE4 was selected as it is an Eulerian hydrodynamics code from LANL. CTH5
was selected as not only because it is a shock physics code from SNL, but because it’s
also the most highly utilized code at the Army Research Laboratory’s Aberdeen
Proving Grounds, where engineers are designing the Future Combat System.

The above work focused on applications for which the Defense community, either the
government itself, or its contractors, develop their own codes. However, much of the
government’s workload consists of running commercial codes developed by
independent software vendors (ISVs). Historically, the most important unclassified
user community was mechanical computer aided engineering (MCAE), the principle
code was NASTRAN6, and the Linpack benchmark was a good proxy for it.
Unfortunately, as a new generation of distributed memory computers emerged, the
Linpack benchmark evolved away from the MCAE codes, and performance measured

 10

by the benchmark no longer reflected that provided to the end users of the MCAE
codes.

To address this shortfall and create a benchmark that measures the throughput of a real
code, we proposed adding LS-DYNA, the most important commercial MCAE code in
terms of usage today, to the HPCS full applications benchmarks. Going even further,
we engaged UCSD to create a new Web site at www.topcrunch.org to track
performance of LS_DYNA on different systems. TopCrunch was modeled on the
TOP500 web site (www.top500.org) that tracks performance on the Linpack
benchmark. Like TOP500, UCSD’s plan was to pose a problem, allow computer
vendors to have their MCAE marketing engineers optimize and run the LS-DYNA
code, and then for UCSD to collect and publish the results. Two problems were posted,
and results have been collected and posted from a variety of MCAE users as well as
computer vendors. Further details of this work can be found in Appendix C, which
contains a brief report from UCSD.

One of the reasons the Linpack benchmark gained a life of its own, independent of any
relationship to mainstream applications, was that it was used by both computer vendors
and users for bragging rights. This meant that over the last decade, these people
invested tremendous effort to port the code and optimize it. The TOP500 Web site
merely has to establish the rules and publish the results. This too is a goal of the
TopCrunch benchmark, to stimulate enough interest that it becomes self-sustaining and
outlives the HPCS program.

In order to represent the needs of a broader set of the intelligence community our team
studied the data flows and algorithms used in specific intelligence systems. Further we
developed a characterization table for future systems based on: process type, products,
functions, data size, and throughput. This work culminated in a series of one-day
workshops that were held for each of the HPCS vendor teams. These workshops were
classified, and no information will be conveyed in this report.

Our team member NGC examined how to represent intelligence processing
requirements to the HPCS vendors. They reported that such codes are typically written
in C or C++ by teams of up to fifteen people and have a lifetime of up to twenty years.
An abstract algorithm that could be representative of this class of computation is set
partitioning under constraints including non-linear least squares. Northrup-Grumman
outlined a benchmark that would implement this algorithm. The proposed benchmark
is discussed in further detailed in Appendix H, a report by NGC.

Developers of embedded HPC systems are increasingly considering tiled architectures,
in which a relatively simple processing component is replicated many times in an array.
While such systems provide very high compute density, their system architecture is
unusual and thus their programmability is open to question. Researchers at ISI in
Arlington, VA, studied the question of mapping a common algorithm, an FFT, onto an
example of such a tiled array, the MIT RAW7 system. They reported that the Static
Communication API was able to profile the communication activity in the algorithm

 11

and automatically determine a static routing pattern. This work suggested that tiled
arrays may offer reasonable levels of programmer productivity for Defense systems.
Appendix B provides further detail of this work.

Productivity is the ultimate theme of the HPCS program. Each of the HPCS vendor
teams was expected to develop its own definition of productivity and share it with the
HPCS community. The goal was to develop a consensus within the Defense HPC
community. In the end, all vendor teams produced formulas for productivity as the
ratio of utility divided by cost. Utility is a complex function of the timeliness of results.
Cost is the total cost of ownership, including the labor to develop codes, the purchase
price of the system itself, and the cost of maintaining the system for over its operation
lifetime. A special issue of the International Journal of High Performance Computing
Applications (Volume 18, Number 4, Winter 2004) was published in November 2004
containing papers generated by HPCS program investigators and edited by Lincoln
Lab’s Dr. Jeremy Kepner.

Our role in defining productivity was to help facilitate the process. Towards that end,
we organized a workshop in Santa Monica, CA in January of 2004. Appendix A
contains the agenda for the January 2004 HPCS Productivity Workshop.

4. HPCS Supplementary Effort

To help facilitate the transition of the HPCS program from phase one to phase two, the
project was extended so we could continue to collaborate with MITRE on the HPCS
benchmarking activity and to create a Web site for the HPCS community. However,
the focus of the second phase of the HPCS Analysis effort was on planning and
initiating two projects whose goals would be to develop methodologies for quantifying
the productivity of future HPCS systems. This work was partitioned into two subsets,
development time to reflect the human cost of writing HPC code, and execution time to
reflect the throughput of the codes on HPC systems. The bulk of the effort was directed
at development time as there is no prior art or related work being pursued elsewhere.
Each of the four foci of the supplementary project is addressed in turn below.

 12

4.1 Benchmarking

ISI continued its successful collaboration with MITRE to organize the HPCS
benchmark set. A revised four-tiered HPCS benchmark strategy was developed, as
depicted in Figure 1. On the left are the HPCchallenge benchmarks
(www.hpcchallenge.org). The overall Petascale performance goals of the HPCS
program correlate to the throughput measured by the High Performance Linpack
(HPL), parallel RandomAccess, and PTRANS kernels of HPCchallenge. The next box
to the right represents the HPCS kernel benchmarks, largely unchanged from the first
phase of HPCS. Continuing to the right, the next box represents a new set of scalable
synthetic compact applications (SSCA). These are intended to provide HPCS scientists
and engineers with model applications that are of a scale that they can be easily
reimplemented in different programming languages, and for a variety of systems,
enabling the community to measure the impact of these technologies on productivity.
Finally, the rightmost ovals depict the representative mission partner applications. At
the end of the HPCS Analysis project, HPCchallenge was up and running, MITRE was
distributing the kernel benchmarks and mission partner applications, and Lincoln Labs
was developing the scalable synthetic compact applications.

Figure 1: The four-tiered HPCS benchmarking hierarchy.

The HPCchallenge was created to augment the famous High Performance Linpack
benchmark used in the TOP500 with kernels exhibiting more challenging memory
access patterns. The HPCchallenge benchmark is managed by the Univerisity of
Tennessee at Knoxville (UTK) via the web site www.hpcchallenge.org. Both source
code for the benchmark and results can be found at the web site. One of the
HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math
benchmarks that we released, and thus we have the role of maintaining this code. We

8 HPCchallenge
Benchmarks

Micro & Kernel
Benchmarks Simulation

Application

Local
DGEMM
STREAM

RandomAcce
s

Global
Linpack
PTRANS

RandomAcces
s

E
xi
sti
n
g
A
p
pli
ca

E
m
er
gi
n
g
A
p
pli
ca

F
ut
ur
e
A
p
pli
ca

Spannin
g

Kernels

Discrete
Math

…
Graph

Analysis
…

Linear
Solvers

…
Signal

Processi
ng

Execution
Bounds

Execution
Indicators

6 Scalable
Compact Apps

Pattern
Matching

Graph
Analysis

Simulation
Simulation
Simulation

Signal
Processing

Purpose
Benchmarks

Development
Indicators

System Bounds

Current
UM2000
GAMESS
OVERFLO

W
LBMHD
RFCTH
HYCOM

Near-
Future

NWChem
ALEGRA

Small-Scale
Applications

 13

also continue to maintain and distribute the other HPCS discrete math benchmarks as
needed.

The kernel benchmarks remain largely unchanged from the first phase of HPCS. They
were augmented with the addition of the STREAMS benchmarks and the other
components of the HPCchallenge benchmark. In addition, it was proposed that a new
set of I/O benchmarks be developed to better represent the needs of the intelligence
community to work with both very large data sets in secondary storage as well as high-
speed streams of raw data from sensor platforms.

The scalable synthetic compact applications were designed to provide HPCS scientists
with model applications that were more complicated than the kernel benchmarks, yet
could still be reimplemented in different programming languages. Six such
benchmarks were proposed. The first three SSCAs were selected to be related to
otherwise classified Defense problems. One would encompass the graph analysis
kernels, a second would involve pattern matching, and a third signal processing. Three
additional simulation SSCAs were also proposed. They would be representative of
applications in chemistry, adaptive mesh refinement, and multi-physics codes. At the
end of the HPCS Analysis project, the graph analysis SSCA and been specified, and
Lincoln Labs had begun implementing it. Development and release of the rest of them
was deferred until later in HPCS phase two.

SUN, one of the three HPCS phase two system vendors also proposed a set of so called
purpose-based benchmarks. These are similar in scale to the SSCAs. However, they
differ in that rather than specifying an abstract mathematical problem, they instead pose
a representative problem from an application domain, leaving the solution technique
entirely up to the programmer. At the end of the HPCS Analysis project, SUN had
proposed nearly ten such purpose benchmarks, and had made significant progress on
the first, taken from the mechanical engineering domain.

The choice of representative HPCS mission partner codes was revisited during the
supplementary phase of the HPCS Analysis project. The SAGE code was dropped
because it turns out to have components that are proprietary to the Science Applications
International Corporation (SAIC). Furthermore, it became necessary to include codes
sponsored by a number of mission partners including DOE SC, NSF, and NASA. ISI
and MITRE insisted that the codes span a wide application space, as defined by the
HPCMP’s computational technology areas (CTA). Finally, source code had to be
available and there could be no restrictions on access to the code by foreign nationals.

Table 3 contains the set of representative mission partner applications as of the end of
the HPCS Analysis project. UMT2000 and CTH were carried over from the first set of
applications. OVERFLOW-D is a computational fluid dynamics (CFD) code
developed by NASA and used by the Army to study rotorcraft. GAMESS and
NWChem are computational chemistry codes. ALEGRA is another Sandia shock
physics code, whose presence in this collection was requested by NNSA. LBMHD and
GTC are magnetic confinement fusion codes. HYCOM is a new Navy ocean modeling

 14

code. Finally, the Community Climate System Model (CCSM) is the World standard
code for modeling long-range climate change. Note that this set not only covers a wide
range of computational disciplines, but it also was chosen such that each mission
partner was explicitly represented by a code it invests in.

Table 3: HPCS Mission Partner representative applications

UCSD also continued to maintain and enhance the TopCrunch, full application
benchmark and web site. In the course of this work, UCSD invented a strategy for
making arbitrarily large models by creating chain-reaction car crashes, allowing the
benchmark to scale to arbitrarily large problems in the future. A Web site such as
TopCrunch can only be successful long term if the computer vendors compete to
perform the best. The TopCrunch Web site is well on its way to providing a full
application alternative to the TOP500. Again, additional details are provided in
Appendix C, which contains a report from UCSD.

Ohio State University (OSU) prototyped an environment for automatically specifying
and executing a set of benchmarks. This is needed for the second phase of HPCS,
where users are expected to want to run a wide variety of HPCS benchmarks,
implemented in different programming languages, and a variety of platforms. The
number of alternatives is such that automation of this process is necessary lest the
productivity of HPCS researchers suffer.

4.2 HPCS Community Web Site

ISI developed a web site to allow for the dissemination of information and the easy
exchange of data. The address for the site is www.highproducivity.org. It contains
publicly available information such as an introduction to the HPCS program, meeting
announcements, and a list of participants. There is also a password protected area
which enables HPCS working groups to share documents. There are email aliases to

CEALBMHD/GTC

CCMNWChem

CWO

CWO

CSM

CSM

RT

CCM

CFD

CTA

RF-CTH

OVERFLOW-D (2)

NASA
DoD

HPCMP
DoE OoS

NSF
DoE

NNSA

HYCOM

Community Climate
System Model (CCSM)

ALEGRA

UMT2000

GAMESS

Mission Partners

Application

CEALBMHD/GTC

CCMNWChem

CWO

CWO

CSM

CSM

RT

CCM

CFD

CTA

RF-CTH

OVERFLOW-D (2)

NASA
DoD

HPCMP
DoE OoS

NSF
DoE

NNSA

HYCOM

Community Climate
System Model (CCSM)

ALEGRA

UMT2000

GAMESS

Mission Partners

Application

 15

facilitate communication amongst the members of the productivity team. Finally, there
is a link to the HPCchallenge benchmarks which are maintained on the University of
Tennessee’s web site, www.hpcchallenge.org. After prototyping the site for the HPCS
program, We turned it over to the Georgia Institute of Technology for long-term
maintenance. The ultimate goal for this web site is that it will outlive the HPCS
program and become an enduring resource for the Defense HPC community.

4.3 Development Time

The HPCS phase two development time project aims at the analysis of HPC
technologies to evaluate them with respect to development-time tradeoffs as well as the
analysis of HPC technologies to understand them with respect to common software
development. In order to achieve these goals HPCS researchers must characterize and
understand individual HPC technologies with respect to attributes such as ease of use,
ease of learning, and types of defects, for a particular set of context variables. Different
metrics and models exist for measuring and predicting execution time under various
conditions. However, little empirical study has been done on the human effort required
to implement those solutions. As a result, many development decisions about language
and approach are made based on anecdote, “rules of thumb,” or personal preference.
Without empirical data, governmental organizations cannot take into account the effects
that an HPC system will have on the development time of Defense applications. Such
data is necessary to help guide decision-making when purchasing the next generation of
HPC systems. Therefore, UMD set out to initiate an empirical study of HPC software
development for the second phase of the HPCS program.

Understanding a discipline involves generating hypotheses, building models (e.g.
application domain, workflows, problem solving processes), checking whether the
understanding is correct (e.g. testing the models and experimenting in the real world),
and finally analyzing the results to learn, encapsulate knowledge, refine models and
evolve hypotheses. The first step towards understanding a discipline is the definition of
various variables and factors involved. In the context of HPCS development time, three
main types of variables can be recognized: controlled independent variables; non-
controlled independent variables; and dependent variables. Controlled independent
variables are factors whose effects are to be studied and manipulated in an experiment.
Examples of these variables are problem type (e.g., embarrassingly parallel or nearest-
neighbor), problem domain (e.g., weather simulation or image processing), program
size (e.g., kernel or compact application), hardware (e.g., cluster), programming model
(e.g., message passing or shared memory), implementation of programming model
(e.g., MPI), base programming language (e.g., C, Fortran or Matlab), access to existing
serial implementation and software development process. Non-controlled independent
variables are factors which the experimenter cannot usually control but may have an
effect on dependent variables. For HPC, these context variables are usually human
attributes such as experience, knowledge of problem domain, educational major (e.g.,
physics, computer science, engineering, or math), relevant courses taken, motivation
and inherent programming ability. Dependent variables are factors which are supposed
to be explained by changes in independent variables. Variables such as execution time,

 16

speedup relative to serial implementation, development time (total or breakdown by
activity) and source lines of code (SLOC) are dependent.

The development time effort’s plan is to conduct human subject software development
experiments in three different contexts. The first is the classroom, which affords
inexpensive access to a large number of subjects, and was the focus of almost all of the
effort in this initial phase. The second is an industrial context, involving software
development professionals. The third is an observational study, in which one analyses
the data collection tools. UMD was also able to begin analyzing some of the
preliminary data collected in pilot classroom experiments.

Classroom Studies
Classroom studies are thought to be representative of a subset of the Defense HPC
software development environment similar to that of the “lone researcher”. The results
obtained from these studies could be generalized for scientists who need to do HPC
programming, but do not have HPC experience. Through classroom studies we are able
to measure ease-of-learning, provide evidence for or against “tribal lore”, and relate the
results to the kernels developed by the Benchmarking Working Group. Other
advantages of classroom studies are running experiments with more subjects, less cost,
and faster results. Classroom studies also allow researchers to analyze the effects of
variables which may be impossible to control on a larger project, identify potentially
statistically significant relationships among a large number of variables, and debug the
experimental protocol before applying it to more expensive studies involving
professionals.

Pilot classroom studies to test and validate the classroom methodology were conducted
by Jeff Hollingsworth at UMD, Alan Edelman at the Massachusetts Institute of
Technology (MIT), John Gilbert at the University of California at Santa Barbara
(UCSB), Allan Snavely at UCSD, and Mary Hall at the University of Southern
California (USC). The San Diego Supercomputing Center (SDSC) provided a
computing platform and the UMD provided an exemplar experimental software suite as
well as guidance on the experimental procedures to the investigators. UMD also helped
each of the classroom instructors work through their respective institution’s procedures
for authorizing research involving human subjects (i.e., the students). Table 1 contains
the classroom study schedule.

Table 4: HPCS Classroom studies schedule

Study Period Location Status

Pre-Pilot Study Fall 2003 University of Maryland Completed –Analyzed

Pilot Studies Spring 2004 MIT, USC, UCSB, UMD Completed –Under
analysis

Pilot Study Fall 2004 UCSD TBD
Full Study Spring 2005 TBD TBD

 17

The classroom studies were run in 6 classes, 13 assignments were given and data from
100 subjects was captured, 71 background questionnaires, 41 post-test questionnaires
and about 500 effort-log entries were collected. Nearly 1,500 hours of effort was
reported, 26,000 time-stamped source files with activity, 2,600,000 lines of code
(multiple versions of each file) and 16,000 time-stamped execution runs were captured.

Through these classroom pilot-studies, good collaboration with all professors involved
was established, software engineering empiricists at UMD learned about the HPCS
program, and HPC professors learned about human-subjects experimentation. A rich
set of hypotheses was generated, a web-based experience base was created, automatic
data collection mechanisms were established, and good initial data on variables such as
source code, different development activities, and the time spent during each of these
activities was captured.

Valuable lessons were learned about HPC infrastructure and both automated and
manual data collection. Technical difficulties are common on HPC machines and it is
not always possible to re-run the code on the same machine later on. The data
collection process is affected by students’ access to un-instrumented machines and
frequent questions on instrumented machines may result in inaccurate answers.
Furthermore, the experimentalists must set up data collection mechanisms, otherwise
important data may not be collected. Reported effort logs are unreliable and the best
way to get subjects to complete questionnaires is to be in the room as they fill them out.

Additional details about UMD’s pioneering work in empirical studies of HPC software
development can be found in Appendix D. Reports from UCSD, UCSB, and MIT
regarding their development time classroom experiments can be found in Appendices
E, F, and G.

Industrial Studies
The first industrial case study was the implementation of the Graph Analysis executable
specification, an HPCS scalable synthetic compact application drafted at Lincoln Labs.
The goal is to develop a compact application that has multiple kernels accessing a
single data structure representing a directed multi-graph, with weighted edges. The
problem includes the implementation of four computational kernels: Graph
Construction, Sort on Large Sets, Graph Extraction and Graph Clustering. At the end of
the HPCS Analysis project, this activity was not yet complete. It will be completed as
part of the Lincoln Labs and UMD HPCS phase two efforts. Additional industrial
HPCS development time experiments are also being planned.

Observational Studies
Finally, in order to evaluate development time experimentation mechanisms and tools,
and compare the results obtained from various mechanisms, UMD designed controlled
observational studies. In these studies one observes the developer throughout the
software development process and collects the development data in several ways. By
comparing the results one can evaluate the effectiveness of data collecting methods

 18

such as manual data collection, Eclipse8, Hackystat9 and other instrumentation
mechanisms. This work will be conducted later in HPCS phase two.

Data Analysis
Analysis of collected data from pilot classroom studies is underway. Although the data
is not yet validated, a rich set of hypotheses has emerged from HPCS course professors’
observations, the data, and experts in HPC community. Rather than creating new
hypotheses and evaluating them, UMD collected “Tribal Lore” from the HPC
community and tried to evaluate its validity by using the experimental data. Three
examples are given below:

The following hypothesis was suggested by Mary Hall (instructor of USC595 pilot
study): Performance tuning of uniprocessor code (optimizing for cache and registers)
takes a substantial fraction of the overall tuning effort.

Figure 2: Effort percentage spent on each activity (USC595)

Figure 2 represents the effort students spent on various activities for the study USC595.
As seen in the figure, the collected data approves the hypothesis.

Another hypothesis, common to HPC practitioners is: The variation in the speedup of
MPI codes will increase with the number of processors

 19

Figure 3: Evidence for hypothesis2 from pilot study CMSC818S

Figure 3 represents the range of parallel speedup observed in data from the CMSC818S
class. As seen in the figure, the collected data again approves the hypothesis.

The following hypothesis emerged from collected data: There is a difference between
people who develop their code at a steady pace and those who “panic” at the deadline
in terms of: code size, total effort, code performance, and defects. Figure 4 represents
the data that this hypothesis emerged from. Notice that the cumulative effort for the
student who worked at a steady pace was less than half that of the student who
“panicked” and finished the project the night before it was due.

Figure 4: Steady Development (left) versus Panic (right)

 20

4.4 Execution Time

The HPCS phase two execution time plan was developed by ISI in coordination with
LLNL and UCSD. An overview is presented below. Due to the fact that related
performance work was ongoing in the broader HPC community, yet there was no
analog to the development time effort, DARPA chose to defer initiation of the
execution time plan until FY04 funding from a mission partner, DOE SC, became
available. Thus only a plan, but no early results are presented here.

The HPCS execution time research project was designed to deliver improved
understanding of architectural factors affecting application execution time on 2010,
Petascale systems. The initial goal is to establish a baseline by understanding the
critical performance features on existing cutting-edge systems, such as the Cray X110,
then move to near-term future systems, such as Red Storm and BlueGene/L11, as they
arrive. We then plan to develop tools for creating models of future applications by
scaling from contemporary problems. The execution time of these model Petascale
applications would then be estimated by running them on simulators for future
machines with new architectural features. To facilitate these studies we propose
developing a Common Modeling API allowing for graceful connection to other HPCS
measurement, modeling, and simulation tools. Finally, we plan to work closely with the
HPCS program’s MITRE team on representative Defense codes and compact
applications to ensure we model representatives from different dimensions of the HPCS
application space.

The execution time plan is structured around five primary thrusts:

1. Study application execution on existing systems to identify critical performance
features.

2. Develop scaling models of applications to predict future machine requirements.

3. Develop a scalable system modeling capability for estimating application
performance given key system parameters of future architectures.

4. Connect tools for measurement, modeling, and simulation with a common
modeling API.

5. Predict end-user productivity when developing and executing full-scale
applications.

The foundation on which all of the rest of this system builds will be a set of
performance tools that use both static analysis of source code and traces of run-time
behavior to extract detailed information about how and why an application performs as
it does on a particular computing system. We will integrate the outputs of a variety of
tools, both those we are developing as part of our existing research as well as research
and commercial tools such as Tau12 and Vampir13 which are familiar to us. Our static
analysis will allow us to generate performance assertions to identify potential
performance bottlenecks and focus our analysis. Our trace tools will determine
specifically what the bottlenecks are. We will be able to quantify performance for

 21

codes today, setting realistic expectations for Petascale systems at the end of the
decade.

A detailed breakdown of the software methodology for scaling applications and
modeling their performance on Petascale systems is illustrated in Figure 5. Each of the
software modules and interface specifications to be developed are shown explicitly.
Specific parallel kernels from the HPCS benchmarks will be extracted to provide a test
suite for the execution evaluation experiments. Trace tools will allow detailed analysis
of executing code to establish a directed graph representing the unfolding computation
and identifying the local computation, memory access patterns, remote request
messages, and global synchronization such as barriers. This provides a quantitative
means of evaluating the key operational properties of the application driven
computation. The result will be a specification and description of the resulting
computational workload in terms of concurrency, precedent constraints, and classes of
operations.

IX

I1

I2

I3App
Kernel Trace

A1

A3

A2

M3: Symbolic
Sim

M1:Explicit
Sim

M2: Envelope
Sim

Computational
Parameters

And
Requirements

Application Model Machine Model Execution
Model

Workload domain Time/resource
domain

Selected
Mission
Agency

Driver
Critical

Apps

Mission
Model
DoD
DOE

NNSA
NSA
NRO

É

ORNL
UCSD

CalTech/JPL
ISI
É

ORNL
UCSD

CalTech/JPL
ISI
É

Mission
Agencies

and
HPCS

Vendors

Delivery
and

Feedback

Requirements
Repository

Figure 5: Detailed Tool Flow for Application Scaling and System Modeling.

The Petascale HPCS platforms to be considered will be vastly larger than existing
machines and the workloads to be run on them are anticipated to be many orders of
magnitude greater than those extracted and characterized from the kernels by the trace
tool suite. Parameterized scaling models (A1 – A3) will be developed for each
application kernel. Initially this will be done by hand and is expected to be labor
intensive. The scaling model will relate the primary characteristics of the workload to a
set of scaling parameters. An open interface format will be defined and include
symbolic parameters and symbolic relationships (I1 – I3). The scaling model accepts
the scaling relationships and transforms the measured values of the trace workload to
produce a new workload characterization.

We proposed to implement four models of machines to examine different operational
properties and performance tradeoffs. The machine models will fall in to different

 22

categories depending on the form of workload scaling model used. An explicit thread
machine model will accept a description of an abstract machine at scale and the
representation of the explicit thread scaled workload. It will apply a transformation to
convert the workload data in to a time domain based representation of the machines
operational characteristics. The UCSD Metasim Convolver14 tool will be extended to
input trace-derived threads and feed them to a discrete event simulation of a computing
system. A continuum envelope machine model will be developed that takes an input
workload envelope and creates a time domain output workload. Because some of the
precedent constraint information will be lost in the envelope representation, this
machine model will generate two new outputs, one for eager evaluation which will
produce a lower bound on execution time, and one for lazy evaluation which will
produce an upper bound on execution time. The final machine model, the symbolic
model, will work directly on a symbolic workload representation and keep some of its
parameters to produce a symbolic representation of the time domain behavior of the
modeled machine. This will allow symbolic manipulation of the results to compute
such higher order properties as sensitivities with respect to key parameters.

When successful, the HPCS execution time project will demonstrate for the HPC
community the ability to extrapolate an existing application’s performance
characteristics to represent a future workload. These models will then be studied with
simulations of future systems to anticipate the execution time performance such
systems will provide to their users. They could also be used to define future HPC
requirements.

5. Ongoing and Future Work

The DARPA HPCS program is ongoing as this report is written, and the productivity
team that ISI helped create continues to play a vital role. A critical aspect of this is a
rich set of benchmarks and applications that was developed to represent the needs of
Defense science and engineering workload to the HPCS vendors and the broader HPC
community. ISI continues to participate in the HPCS benchmarking work, in
collaboration with MITRE. The most visible aspect of the HPCS benchmarking effort
is the HPCchallenge benchmark which augments the TOP500 with code kernels
exhibiting more challenging memory access patterns. The HPCchallenge benchmark is
maintained by University of Tennessee at Knoxville (UTK). There is also an ongoing
effort led by OSU to develop a test and specification software infrastructure to facilitate
benchmarking with a wide variety of kernels, programming models, and systems.

Another productivity team project is underway to learn how to quantify the relative
costs of different programming models in the development of Defense applications.
Led by the UMD, an empirical study of programmer productivity is being developed.
This is being complemented by a study of existing, large-scale scientific and
engineering code projects. The existing codes study is being led by LANL’s Dr.
Douglass Post. The ultimate goal of these is to provide a quantitative basis by which
Defense program managers can anticipate HPC software development costs and use
this information as part of overall system procurement strategies.

 23

Just as it’s important to anticipate software development costs, so too is it important to
be able to anticipate how well future HPC systems will perform, even before the first
prototypes exist. This is because the Defense community is usually the pioneering user
of such systems. Therefore, an execution time project led by ISI has also been initiated
to model current Defense applications at the Petascale, study their behavior on models
of HPCS systems, and enable engineers to reason about architectural tradeoffs.

 24

6. Publications

Jeff Carver, Sima Asgari, Victor Basili, Lorin Hochstein, Jeffrey Hollingsworth, Forrest
Shull, and Marv Zelkowitz. "Studying Code Development for High Performance
Computing: The HPCS Program." In Proceedings of the Workshop on Software
Engineering and High Performance Computing Applications (held at ICSE 2004).
Edinburgh, Scotland.

Sima Asgari, Victor Basili, Jeff Carver, Lorin Hochstein, Jeffrey Hollingsworth, Forrest
Shull, and Marv Zelkowitz. "Challenges in Measuring HPCS Learner Productivity in an
Age of Ubiquitous Computing." In Proceedings of the Workshop on Software
Engineering and High Performance Computing Applications (held at ICSE 2004).
Edinburgh, Scotland.

Victor Basili, Sima Asgari, Jeff Carver, Lorin Hochstein, Jeffrey K. Hollingsworth,
Forrest, Shull, Marv Zelkowitz. A Pilot Study to Evaluate Development Effort for High
Performance Computing." University of Maryland Technical Report CS-TR-4588.
April 2004.

Sima Asgari, Victor Basili, Jeffrey Carver, Lorin Hochstein, Jeffrey K. Hollingsworth,
Forrest Shull, Marvin Zelkowitz. " High Productivity Computer Systems (HPCS):
Empirical studies on Development Time" In the poster session of the 2004 ACM-IEEE
International Symposium on Empirical Software Engineering (ISESE 2004) 19-20
August 2004 Redondo Beach CA, USA

Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng. "Star-P:
High productivity parallel computing." Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04).

John R. Gilbert and Viral Shah. "Graphs and sparse matrices in an interactive
supercomputing environment." Minisymposium talk presented at SIAM Annual
Meeting, 2004.

Imran Patel and John R. Gilbert. "Grid*P: Interactive supercomputing on the grid with
Matlab." Presented at SIAM Conference on Parallel Processing for Scientific
Computing, 2004.

Viral Shah and John R. Gilbert. "Sparse matrices in Matlab*P: Design and
implementation." Accepted to 11th Annual International Conference on High
Performance Computing (HiPC 2004).

Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng. "Star-P:
High productivity parallel computing." Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04).

 25

7. Personnel

7.1 ISI Research Staff:

• Dr. Robert Lucas, Principal Investigator
• Dr. Pedro Diniz
• Dr. Mary Hall
• Dr. Jacqueline Chame
• Mr. Daniel Davis
• Mr. Spudun Bhatt
• Dr. Barbara Yoon (consultant)

7.2 Subcontractor Research Staff

• MIT: Alan Edelman
• NGC: Robert Babb
• NGC: Mark Coffey
• OSU: Ashok Krishnamurthy
• SGI: William Harrod
• UCSB: John Gilbert
• UCSD: Allan Snavely
• UCSD: Dave Benson
• UMD: Vic Basili
• UMD: Jeff Hollingsworth

 26

8. Results, Conclusions & Technology Transfer

The HPCS Analysis project supported DARPA’s HPCS effort, allowing ISI to work
with MITRE and Lincoln Labs to represent Defense computing needs to the broader
HPC community, to develop the HPCS benchmarking suite, prototype the
www.highproductivity.org web site, and to develop methodologies for measuring both
the development as well as the execution time productivity of Defense HPC systems
and their programming environments. In doing so it achieved all of the goals set for it
in the HPCS Analysis project and its supplement.

There are some early results to report from the HPCS Analysis project. The HPCS
benchmarks and the HPCchallenge benchmark were developed. We released the HPCS
discrete mathematics benchmarks to the HPC community and maintain the
RandomAccess code. We initialized the www.highproductivity.org web site and
transitioned its maintenance to Georgia Tech. We planned and organized the HPCS
phase two development time and execution time activities. Furthermore, our team even
did some pioneering work, performing development time experiments in HPC
classrooms.

The HPCS benchmarks, HPCchallenge, and TopCrunch are already in use by the
broader HPC and MCAE communities. The productivity methodologies have been
published, but not yet incorporated into any government procurements at this time. The
execution and development time research projects are too premature to have produced
any definitive conclusions.

9. Inventions, or patent disclosures

No inventions were disclosed or patents submitted by the ISI HPCS Analysis research
team or its subcontractors.

 27

10. References

1 Jack Dongarra, “Performance of Various Computers Using Standard Linear Equations
Software”, (Linpack Benchmark Report), University of Tennessee Computer Science
Technical Report, CS-89-85,2004

2 Souli, M. Sofiane, Y. Olovsson, Lars. “ALE and fluid/structure interaction in LS-
DYNA”, American Society of Mechanical Engineers, Pressure Vessels and Piping
Division, (PVP) Emerging Technology in Fluids, Structures, and Fluid-Structure
Interactions, v 485 n1, 2004. p 181-187

3 J.S. Vetter and A. Yoo, “An Empirical Performance Evaluation of Scalable Scientific
Applications,” Proc. SC 2002, 2002.

4 Gisler, Galen R. Weaver, Robert P. Mader, Charles L. Gittings, Michael L. “Two- and
three-dimensional asteroid impact simulations”, Computing in Science & Engineering.
v 6 n 3 May/June 2004. p 46-55

5 E.S. Hertel, Jr, R.L. Bell et al., “CTH: A Software Family for Multi-Dimensional
Shock Physics Analysis,” Proc. Proceedings of the 19th International Symposium on
Shock Waves, 1993, pp. 377-82.

6 Cote, F. Masson, P. Mrad, N. Cotoni, V., “Dynamic and static modelling of
piezoelectric composite structures using a thermal analogy with MSC/NASTRAN”,
Composite Structures, v 65 n 3-4, September 2004, p 471-484

7 Anant Agarwal, et.al., "Evaluation of the Raw Microprocessor: An Exposed-Wire-
Delay Architecture for ILP and Streams”, Proceedings of International Symposium on
Computer Architecture, June 2004.

8 Sherry Shavor , Jim D'Anjou , Pat McCarthy , John Kellerman , and Scott Fairbrother,
“The Java Developer's Guide to Eclipse”, , Pearson Education, 2003

9 Philip M. Johnson, “You can't even ask them to push a button: Toward ubiquitous,
developer-centric, empirical software engineering”, The NSF Workshop for New
Visions for Software Design and Productivity: Research and Applications, Nashville,
TN, December, 2001.

10 Steven Vaughan-Nichols, “New Trends Revive Supercomputer Industry”, IEEE
Computer, v37 n2, Feb 2004

11 George Almasi, et.al., “Unlocking the Performance of the BlueGene/L
Supercomputer”, Proc. SC2004 , November 2004

12 Sameer Shende , Allen D. Malony, “Integration and applications of the TAU
performance system in parallel Java environments”, Proceedings of the 2001 joint

 28

ACM-ISCOPE conference on Java Grande, p.87-96, June 2001, Palo Alto, California,
United States

13 Pallas GMbH, “VAMPIR: Visualization and Analysis of MPI Resources”,
http://www.pallas.de/pages/vampir.htm

14 Laura Carrington, Nicole Wolter, Allan Snavely, and Cynthia Bailey Lee “Applying
an Automated Framework to Produce Accurate Blind Performance Predictions of Full-
Scale HPC Applications”, UGC 2004, Williamsburgh, June 2004.

 29

11. List of Acronyms

API Application Programming Interface
ASCI Accelerated Strategic Computing Initiative
BMM Bit-Matrix-Multiply
CCS Center for Computing Sciences
CCSM Community Climate System Model
CTA Computational Technology Area
DARPA Defense Advanced Research Projects Agency
DOD Department of Defense
DOE Department of Energy
FFRDC Federally Funded Research and Development Center
FFT Fast Fourier Transform
GF(2) Galois Field Two (i.e., binary arithmetic)
HPC High Performance Computing
HPCS High Productivity Computing Systems
HPCMP High Performance Computing Modernization Program
HP Hewlett Packard Corporation
HPL High Performance Linpack
IBM International Business Machines Corporation
ISI Information Sciences Institute
ISV Independent Software Vendor
LANL Los Alamos National Laboratory
LLNL Lawrence Livermore National Laboratory
MCAE Mechanical Computer Aided Engineering
MIT Massachusetts Institute of Technology
MPI Message Passing Interface
NAS NASA Advanced Supercomputing Division
NASA National Aeronautics and Space Administration
NGC Northrup-Grumman Corporation
NNSA National Nuclear Security Administration
NPB NAS Parallel Benchmarks
NSA National Security Agency
NSF National Science Foundation
ORNL Oak Ridge National Laboratory
OSU Ohio State University
PI Principal Investigator
SAIC Science Applications International Corporation
SC Office of Science
SLOC Source Lines of Code
SNL Sandia National Laboratory
SSCA Scalable Synthetic Compact Application
UCSB University of California at Santa Barbara
UCSD University of California at San Diego
UMD University of Maryland
UPC Unified Parallel C

 30

12. Appendices

Appendix A: January 2004 HPCS Productivity Workshop Agenda

Tuesday, Jan 13: Productivity Team
08:30-09:00 Breakfast
09:00-09:30 Opening Remarks (Graybill/DARPA & Johnson/DoE OoS)
09:30-10:00 Program Overview and Goals (Kepner/Lincoln)
10:00-11:30 Development Time Working Group
 -Pre-Pilot Results and Pilot Plans (Basili/UMD) [50 min]
 -Break [15 min]
 -HPC Class Overview (Gilbert/UCSB) [25 min]
11:30-12:00 Execution Time Working Group (Lucas/ISI)
12:00-01:00 Lunch
01:00-01:30 Programming Models Working Group (Lusk/ANL & Snir/UIUC))
01:30-02:30 Benchmarks Working Group
 -Overview and v0.1 Compact Apps (Koester/Mitre) [30 min]
 -HPCchallenge Results (Luszczek/UTK) [30 min]
02:30-03:00 Test & Spec Environment Working Group (Krishnamurthy/OSU)
03:00-03:15 Break
03:15-03:45 Existing Codes Analysis Working Group (Post)
03:45-04:30 Workflows, Models and Metrics Working Group (Kepner/LL)
04:45-05:30 Discussion

Wednesday, Jan 14: Productivity Team & Individual Working Groups
08:30-09:00 Breakfast
09:00-10:30 Vendor Updates and Feedback
 -Web Matrix ... (Mizell/Cray) [30 min]
 -Purpose Benchmarks ... (Votta/Sun) [30 min]
 -Productivity status update ... (Rajamony/IBM) [30 min]
10:30-10:45 Break
10:45-11:50 Partner Invited Presentations
 -Code Profiling (Davis/HPCMO & Snavely/UCSD) [45 min]
 -Council on Competitiveness [20 min]
11:50-01:00 Lunch
01:00-02:00 Roundtable Discussion and Feedback
02:00-05:00 Individual Working Group Meetings (Optional)
 -Development Time Working Group (Lead: Basili/UMD)
 -Execution Time Working Group (Lead: Lucas/ISI)
 -Existing Codes Analysis Working Group (Lead: Post/LANL)
 -Workflows, Metrics, Models Working Group (Lead: Kepner/LL)

Thursday, Jan 15: Individual Working Group Meetings (Optional)
09:00-12:00 Benchmarking Summit (Lead: Koester/Mitre)
 -Test and Spec Working Group (Lead: Krishnamurthy/OSU)

 31

Appendix B: Tiled Architecture Report from ISI East

Tiled architectures are an approach for a
scalable microprocessor that addresses
issues of continued technology scaling.
Tiled processors implement a two-
dimensional array of processors (tiles) that
are connected with a mesh topology. Each
tile occupies a fraction of the chip space,
and clock speeds can be high since intra-
processor signals only need to travel only a
short distance. One example of a tiled
microprocessor is the Raw chip, which has
been developed and implemented at MIT.
The current Raw implementation contains
16 tiles on a chip connected by a very low

latency 2-D scalar mesh network. The Raw scalar mesh network is implemented with
four sub-networks: two static and two dynamic. The dynamic networks require that the
processor construct a header that identifies the length and destination of a message, and
then messages are dynamically routed to their destination.

Messages in the static network do not require headers. Programmable routers in the static
network are preprogrammed to implement the appropriate routing. These programmable
routers improve performance in two ways. First, the elimination of headers improves
network utilization and eliminates the software overhead required to create a header.
Second, the fact that routing is determined statically at compile time allows optimized
global routing to be performed. This static global optimization has the potential to
increase network throughput. The disadvantage of using the static network is that inter-
tile routing information must be determined at compile time. It is difficult or impossible

to extract routing
information from most
programs written in
common programming
languages such as C or
Java. MIT is developing a
stream programming
language called StreaMIT
that allows a compiler to
extract routing information
from a program, but this
requires applications to be
re-written in this new
language. We have
developed a tool set that
improves programmer

Static routing
Information

De ve lopme nt
 w/ MPI
Augme nt
 w/ Routing APIs

Source code
ROUT E_MODE

Routing
Tool

Routing
Table in
a C file

RUN_MODE

Run on RAW

Code
Ge neration

Tool

Final
Routing

Input

Switch
Setup
Code

Compile
& Run

Compile

Figure 2. Static communication API tool flow

Computing
processor

(8 stage 32 bit,
single issue,

in order)

Com-
muication
processor

96 KB
I-Cache
32 KB

D-Cache

4-stage
pipelined

FPU

8 32-bit
channels

Figure 1. Raw architecture

 32

productivity for tile-based architectures by allowing minimal changes to a message-
passing program written in C to be used to extract static routing information.

Our tool set requires that a parallel message passing program written in C be modified to
use our Static Communication API. The Static Communication API allows the program
to be run in a profile mode, during which static routing information is automatically
extracted from the program. Our routing software can then be used to produce a program
for the static routing network. Finally, the same program can be run in execution mode
and static communication is done over the Raw static network. This tool flow is shown in

Figure 2.

It is beyond the scope of this study
to measure the productivity
improvement of programmers
through the use of this tool.
However, our experience is that it
is much easier and faster to
program using this API than it is to
learn the details of programming
the static network. We have
compared the execution
performance of two application
kernels using three programming
method. The results are shown in
Figure 3 and Figure 4. The first
method is to manually program the
static network. This method can
achieve optimal performance
(assuming the programmer has
time to optimize routing and code),
but is the most time consuming.
The second method is to use our
Static Communication API as
described in the previous
paragraph and shown in Figure 2.
The third method is to use the
dynamic network using a library
based dynamic communication

API. This third method is the easiest for the programmer but incurs the overheads of the
dynamic network. Figure 3 shows that for smaller corner turns, our Static
Communication API achieves performance roughly equal to that of the manually
programmed implementation, and both static network implementations perform
significantly better than the dynamic network implementation. For the largest corner turn,
there is some performance degradation (about 25%) when the API is used (compared to
the manual implementation), but the performance is still almost double the performance
achieved using the dynamic network. The FFT performance is determined more by the

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000 1200

FFT_SIZE

C
yc

le
s Static

API-based
Dynamic

Figure 4 FFT performance

4x4CT: Total cycles

0

10000

20000

30000

40000

50000

60000

16*16 32*32 64*64

Static
Api
Dynamic

Figure 3. Corner turn performance

 33

computational performance than the communication performance, so all three
methodologies achieve roughly equal performance.

 34

Appendix C: TopCrunch Report from UCSD

The TopCrunch project was initiated to track the aggregate performance trends of high
performance computer systems and engineering software. Instead of using a synthetic
benchmark, actual engineering software applications are used with real data and are run
on high performance computer systems. The data are available for download in the form
of data files for our current software suite. With time, we expect to track the evolution of
delivered performance as a function of enhancements in both software algorithms and
hardware. The results of the benchmarks are available as submitted, and may be searched
by data, code name, and year. Series of benchmarks may also be plotted against each
other.

The benchmark programs were chosen to reflect the types of calculations performed in
the mechanical and aerospace communities: LS-DYNA (structural dynamics), CTH (fluid
mechanics), and SPaSM (materials science). These codes have different challenges to
address in terms of domain decomposition, message passing, load balancing, and
dynamic memory allocation that makes the comparison of their relative scaling
interesting.

The benchmark problems were chosen to reflect current engineering practice in the
real world, and to have a structure that allows them to be scaled up as computer
performance grows. The problems are not intended to be optimal analyses, i.e., the
fastest possible choice of options to achieve a particular solution, because engineers
rarely have time to optimize their analyses in real life. For example, the accuracy of
the stress distribution in a structural element increases with the number of Gaussian
quadrature points, but at the expense of speed. For a given level of accuracy, there
is, therefore, a choice that maximizes speed. It is, however, common engineering
practice to use more points than absolutely necessary because an inaccurate solution
will require rerunning the analysis, which effectively doubles its cost and more than
doubles the wall clock time to get an acceptable answer. The same general
observation holds true for many other analysis choices to be made.

The site has been successful enough to create controversy among the participating
vendors. While this has slowed the development of the site to some degree, the level
of interest by both users and vendors indicates that the site will enjoy long-term
success.

Three vendors, during the course of this project, questioned the accuracy of each
other’s benchmark results for LS-DYNA. While over 100 results have been posted
during the past year, the number available to the public is 77 due to some of them
being removed as being irreproducible and others being updated as performance
improves. The data hasn’t been destroyed for any of the results, just made invisible
to the public. When we have enough data, we will study the historical evolution of
the benchmark performance. The site rules required that all benchmarks be
performed with production versions of LS-DYNA. Although the intent was that only
the versions generally available to commercial customers could be used, some

 35

vendors had a broader interpretation. One vendor modified the binary to enhance the
performance, and another modified the source code, and neither version was
generally available. Gains of up to 25% in performance were obtained for the
benchmark problems.

Livermore Software Technology Corporation (LSTC), which produces LS-DYNA,
initially supported tweaking the code by the vendors in the belief that the customers
would benefit from the competition for better performance. Since the enhanced
versions hadn’t been run through the suite of test problems for quality assurance,
they turned out to be less robust than the production versions. The vendors refused
to disclose their modifications to the binaries and the source code because they
didn’t want their competitors to benefit from the enhancements. Since LSTC didn’t
know the nature of the changes to their own product, they were unable to support
the vendor-enhanced versions. LSTC therefore withdrew support of having the
benchmark results for the vendor-enhanced versions on the Top Crunch site.

An additional complicating factor was the rolling nature of the commercial releases
of LS-DYNA. As new compilers and operating systems become available, and
vendor-specific bugs are eliminated, LSTC releases incremental updates for
individual machines. Vendors submitted results for the incremental updates prior to
their appearance on the FTP site, again resulting in charges of unfair tweaking.

Several vendors sent ultimatums during the last six months threatening to withdraw
their results from the site unless the Top Crunch restricted the results to only
versions that are available on the LSTC web site at the time of the benchmark
submission. To maintain the participation of the majority of the vendors, this has
now become the standard. One vendor has withdrawn permanently.

The difficulties associated with LS-DYNA are multiplied with CTH and SPaSM
since they are codes from the national laboratories that are distributed to users as
source code, making it impossible to prohibit tweaking either the source or binary.
Given the controversy we experienced with LS-DYNA, we are discussing with
vendors the rules that should be imposed for benchmarking these codes. Progress
has been slow because vendors whose machines are performing well with LS-
DYNA are concerned that their machines may appear slower if other vendors
aggressively modify these codes. Due to the security issues with CTH, and the small
user base (in comparison with LS-DYNA), the vendors also seem less interested in
benchmarking these codes. It may, in the long run, be a better strategy to restrict
Top Crunch to commercial codes, and replace CTH with Fluent.

With the exception of the San Diego Supercomputer Center, obtaining benchmark
results from supercomputer centers has proven difficult. Obtaining good parallel
performance requires having a dedicated machine. For a major supercomputer
center, these means getting them to have a system operator run the benchmarks
during a scheduled maintenance period. In addition, LS-DYNA requires license
keys for each processor, or a network license that requires a client program on each

 36

processor. The level of effort required to install the licensing keys/clients on
hundreds of processors has also been a major obstacle with the national
supercomputer centers.

In summary, we have met our primary goal of obtaining benchmarks of actual
commercial engineering software over a wide range of machines. Because of the
commercial importance of our results to the vendors, whose customers recognize the
limitations of using LAPACK to choose machines, we have found ourselves in the
middle of controversies that we didn’t anticipate. Although this initially slowed the
progress of the site, the visibility gained from the controversies will ensure the
project’s longevity.

 37

Appendix D: Development Time Report from UMD

Development Time Working Group
Report for Phase 1

Sima Asgari1, Vic Basili12, Jeff Carver1, Lorin Hochstein1, Jeff Hollingsworth1,

Forrest Shull2, Marvin Zelkowitz12
1 University of Maryland 2 Fraunhofer Center - Maryland

July 2004

1. Introduction

The main goal of HPCS project is the analysis of vendor technologies to predict their
productivity from the point of view of purchaser (government). Within the HPCS
framework, the Development-time working group aims at the analysis of existing HPC
technologies to evaluate them with respect to development and execution time tradeoffs
and the analysis of existing HPC technologies to understand them with respect to
common software development. In order to achieve these goals we must characterize and
understand individual technologies by analyzing each HPC technology to understand it
with respect to attributes such as development/execution time tradeoff, ease of use, ease
of learning and types of defects, for a particular set of context variables. Different metrics
and models exist for measuring and predicting execution time under various conditions.
However, little empirical study has been done on the human effort required to implement
those solutions. As a result, many development decisions about language and approach
are made based on anecdote, “rules of thumb,” or personal preference. Without empirical
data, governmental organizations cannot take into account the effects that a high
performance computing system will have on development time. Such data is necessary to
help guide decision-making when purchasing the next generation of high performance
computing systems.

2. Overview

Understanding a discipline involves generating hypotheses, building models (e.g.
application domain, workflows, problem solving processes), checking whether our
understanding is correct (e.g. testing our models, experimenting in the real world),
analyzing the results to learn, encapsulate knowledge, refine models and evolve
hypotheses. The first step towards understanding a discipline is the definition of various
variables and factors involved. In the context of HPCS development time, three main
types of variables as controlled independent variables; non-controlled independent
variables and dependent variables can be recognized. Controlled independent variables
are factors whose effects are to be studied and manipulated in an experiment. Examples
of these variables are problem type (embarrassingly parallel, nearest-neighbor), problem
domain (weather simulation, image processing), problem size (kernel, compact app),
hardware (cluster, SMP), programming model (message passing, shared memory, mixed),
implementation of programming model (MPI, OpenMP), base programming language (C,

 38

Fortran, Matlab), access to existing serial implementation and workflow/process. Non-
controlled independent variables are factors which the experimenter cannot usually
control but may have an effect on dependent variables. For HPC, context variables are
usually human attributes such as experience, knowledge of problem domain, major
(physics, CS, EE, math), relevant courses, motivation and inherent programming ability.
Dependent variables are factors which are supposed to be explained by changes in
independent variables. Variables such as execution time, speedup relative to serial
implementation, development time(total or breakdown by activity and SLOC are
dependent.

3. Experimental Studies
In the Development-time working group we conduct three different types of experimental
studies.

3.1 Classroom Studies
Classroom studies are subsets of HPC development environment similar to “lone
researcher” work environment. The results obtained from these studies could be
generalized scientists who need to do HPC programming but do not have HPC
experience. Through classroom studies we are able to measure ease-of-learning, provide
evidence for/against “tribal lore” and related the results to the kernels developed by the
Benchmarking Working Group. Other advantages of classroom studies are running
experiments with more subjects, less cost and faster results, studying the effects of
variables which may be impossible to control on a larger project, identifying potentially
statistically significant relationships among a large number of variables and debugging
experimental protocol before applying it to professionals. Table 1 represents classroom
study schedule.

Table 1: HPCS Classroom studies

To date, the classroom studies were run in 6 classes, 13 assignments were given and data
from 100 subjects was captured, 71 background questionnaires, 41 post-test
questionnaires and about 500 effort-log entries were collected. Nearly 1,500 hours of
effort was reported, 26,000 time-stamped source files with activity, 2,600,000 lines of
code (multiple versions of each file) and 16,000 time-stamped execution runs were
captured.

3.1.1 Pilot-study Successes
Through pilot-studies good collaboration with all professors involved was established,
empiricists learned about HPCS and HPC professors learned about human subjects
experimentation, a rich set of hypotheses was generated, a web-based experience base

Study Period Location Status

Pre-Pilot Study Fall 2003 University of Maryland Completed –Analyzed

Pilot Studies Spring 2004 MIT, USC, UCSB, UMD Completed –Under analysis
Pilot Study Fall 2004 UCSD TBD
Full Study Spring 2005 TBD TBD

 39

was created, automatic data collection mechanisms were established. Good data on
variables such as source code, different development activities and the time spent during
activities was captured.

3.1.2 Pilot-study Lessons Learned
Through pilot studies we learned valuable lessons about HPC infrastructure and
automated and manual data collection. Technical difficulties are common on HPC
machines and it is not always possible to re-run the code on the same machine later on.
Data collection process is affected by students’ access to un-instrumented machines and
frequent questions on instrumented machines may result in inaccurate answers.
Furthermore, the experimentalists must set up data collection mechanisms, otherwise
important data may not be collected. Reported effort logs are unreliable and the best way
to get subjects to complete questionnaires is to be in the room as they fill them out.

3.2 Industrial case studies
Our first case study was the implementation of executable benchmark reference in MIT
Lincoln Labs. The problem to be solved is HPCS Scalable Synthetic Compact
Applications. The goal is to develop a compact application that has multiple analysis
techniques (multiple kernels) accessing a single data structure representing a directed
multi-graph with weights. The problem includes the implementation of four
computational kernels: Graph Construction, Sort on Large Sets, Graph Extraction and
Graph Clustering. The implementation is not yet complete. We are planning new
industrial development.

3.3 Observational Studies
In order to evaluate our experimentation mechanisms and tools and compare the results
obtained from various mechanisms, we are designing controlled observational studies. In
these studies we observe the developer throughout the development phases and collect
the development data in several ways and by comparing the results evaluate the
effectiveness of data collecting methods such as, manual data collection, Eclipse,
Hackystat and other instrumentations.

4 Data Analysis and Hypotheses
Analysis of collected data from Pilot studies is underway. Although the data is not yet
validated, a rich set of hypotheses has emerged from HPCS course professors’
observations, the data and the experts in HPC community. Other than creating new
hypotheses and evaluating them, we are collecting the “Tribal Lore” from the community
and trying to evaluate their validity by using the experimental data.
Sample hypotheses are given below.

Professors’ Hypothesis
The following hypothesis was suggested by Mary Hall (instructor of USC595 pilot
study):

Hypothesis 1: Performance tuning of uniprocessor code (optimizing for cache and
registers) takes a substantial fraction of the overall tuning effort.

 40

Figure 1 represents the effort students spent on various activities for the study USC595.

Figure 1. : Effort percentage spent on each activity (USC595)

As seen in the figure, the collected data approves the hypothesis.

Existing Hypothesis
Hypothesis 2: The variation in the speedup of MPI codes will increase with the number
of processors

Figure 2. Evidence for hypothesis2 from pilot study CMSC818S

 41

New Hypothesis
The following hypothesis emerged from collected data.
Hypothesis 3: There is a difference between people who develop their code at a steady
pace and those who “panic” at the deadline in terms of: code size, total effort, code
performance / speedup and defects.
Figure 3 represents the data that this hypothesis emerged from:

Figure 3: Steady Development (left) versus Panic (right)

5 Conclusions
5.1 Working Group Interactions
We work together with the Existing Code working group in order to integrate questions
from their professional developer surveys into our classroom surveys where possible. We
share our experiences and lessons learned from case studies, controlled experiments and
data analysis aspects. We collaborate with the Benchmarking working group to use
Kernel definitions in development time experiments and to determine which kernels are
covered by existing classroom assignments. We also study development effort for
Compact Applications defined by this working group. The Compact Applications could
be used as basis for larger projects in HPC courses.

5.2 Future Work
We are planning to create a clearinghouse of HPCS data. Towards this goal a website of
hypotheses and their supporting data has been created. More analysis will be carried out
on the data by taking various context variables into account. The relationship between
involved variables will be more clearly defined. Concrete metrics will be defined for each
hypothesis to allow measurement and model Based on these metrics the set of hypotheses
will be refined so that the hypotheses will be prioritized based on the support they receive
from the data and the unsupported ones could be eliminated. We are looking to identify
more professional case studies, observational studies and additional pilot studies (Fall
2004)

 42

6 Publications
o Jeff Carver, Sima Asgari, Victor Basili, Lorin Hochstein, Jeffrey Hollingsworth,

Forrest Shull, and Marv Zelkowitz. "Studying Code Development for High
Performance Computing: The HPCS Program." In Proceedings of the Workshop on
Software Engineering and High Performance Computing Applications (held at
ICSE 2004). Edinburgh, Scotland.

o Sima Asgari, Victor Basili, Jeff Carver, Lorin Hochstein, Jeffrey Hollingsworth,

Forrest Shull, and Marv Zelkowitz. "Challenges in Measuring HPCS Learner
Productivity in an Age of Ubiquitous Computing." In Proceedings of the Workshop
on Software Engineering and High Performance Computing Applications (held at
ICSE 2004). Edinburgh, Scotland.

o Victor Basili, Sima Asgari, Jeff Carver, Lorin Hochstein, Jeffrey K. Hollingsworth,

Forrest, Shull, Marv Zelkowitz. A Pilot Study to Evaluate Development Effort for
High Performance Computing." University of Maryland Technical Report CS-TR-
4588. April 2004.

o Sima Asgari, Victor Basili, Jeffrey Carver, Lorin Hochstein, Jeffrey K.

Hollingsworth, Forrest Shull, Marvin Zelkowitz. " High Productivity Computer
Systems (HPCS): Empirical studies on Development Time" In the poster session of
the 2004 ACM-IEEE International Symposium on Empirical Software Engineering
(ISESE 2004) 19-20 August 2004 Redondo Beach CA, USA

 43

Appendix E: Development Time Report from UCSD

This past year Dr. Alan Snavely collaborated with the rest of the HPCS software
engineering team and other academics to design and implement a new class curriculum
that includes the conducting of HPC software engineering experiments. A sustainable
course syllabus was evolved and adopted by several computer science departments.
Thereby a body of evidence is being built up, and will continue to be built up ongoing, to
answer the question “what is the development time versus performance tradeoff when
using today’s programming paradigms on HPC platforms?

Dr. Snavely contributed input from the UCSD Computer Science curricula, and presented
to the team, then further analyzed, existing class structure and parallel coding
assignments in UCSD’s graduate level parallel programming courses; thus to help answer
the question: “what is current best-practice as to methods taught”? Next the team
participated in a pilot study of development time versus execution time for different
parallel programming approaches such as MPI, threading (OpenMP), parallel arrays (Co-
Array Fortran, UPC) etc. on various HPC platforms. The results of these preliminary
investigations, including the class taught by Dr. Mary Hall at USC to which Dr. Snavely
provided technical assistance, are being folded into a new course syllabus that will
include experiments such as the following to be conducted by Dr. Snavely in the Fall at
UCSD (highly simplified example): Assign students a set of parallel programming
assignments to code up. Step 1: Code problem(s) in serial. Step 2: Code problem using
OpenMP or code problem using MPI. Step 3: Optimize for number of programs solved in
a fixed time period (productivity) and/or speed and/or scalability and serial efficiency
(performance). Compare the performance and code size and effort of the different
approaches. Dr. Snavely provided technical support to Dr. Mary Hall and Dr. Jacqueline
Chame in their class at USC taught using SDSC’s Blue Horizon Power3 system and
incorporated lessons learned into the parallel class (CSE260) that he will teach in the Fall
at UCSD.

In Fall 2004 Dr. Snavely will teach the developed syllabus in a parallel class in which
students participate in human experiments to quantify productivity by having their
programming behaviors monitored as part of course projects to develop HPC problem
solutions. He will especially concentrate on quantifying the time-to-correct solution from
the programming standpoint vs. additional time required to achieve the best-optimized
solution (with respect to wall-clock execution time) tradeoff. The basic approach is a
programming contest whereby points are awarded for number or problems solved and/or
performance of solution.

 44

Appendix F: Development Time Report from UCSB

The University of California at Santa Barbara accomplished four principle objectives:

1. Developed strategy and materials for an HPC course to be included in the pilot study
2. Conducted a pilot study in an HPC course at UCSB
3. Performed preliminary experiments to extend data collection and analysis techniques
4. Prepared pre-pilot experiments within an HPC environment for use in the studies.

A brief synopsis of each accomplishment follows.

1. Developed strategy and materials for an HPC course to be included in the pilot study

During the Fall of 2003 we redesigned the syllabus of the UCSB graduate course CS
240A, aiming to offer it in Spring 2004. The new course is "an interdisciplinary
introduction to applied parallel computing on modern supercomputers. Topics include
applications-oriented architectural issues, MPI, OpenMP, parallel Matlab, and parallel
numerical algorithms."

The redesign had three goals. First, the new course is to have a distinctly applied and
interdisciplinary character. It is to be a required course for first-year graduate students
(Master's and PhD) in UCSB's Graduate Specialization in Computational Science and
Engineering. In this program, students obtain a MS or PhD in a traditional discipline
(Computer Science, Mechanical and Environmental Engineering, Chemical Engineering,
Electrical and Computer Engineering, or Mathematics) with a thesis jointly supervised by
faculty in different disciplines.

The second goal for the redesigned course was to develop several programming project
assignments from CS&E application areas. Implementations were to be done using three
different models of computation: message-passing (using MPI); shared-memory (using
OpenMP); and novel (using our prototype Matlab*P system).

The goal for the redesigned course was to facilitate quantification of the productivity of
the students, for the HPCS pilot study.

2. Conducted a pilot study in an HPC course at UCSB

Working with the UMD team, we conducted a pilot productivity study in CS 240A
during the Spring quarter, March to June 2004.

We used the three technologies we had planned, MPI, OpenMP, and Matlab*P. Our two
primary computing platforms were a 32-processor Beowulf cluster belonging to UCSB
(on which the students ran MPI, 2-processor OpenMP, and Matlab*P) and the Blue
Horizon and DataStar HPC systems at the San Diego Supercomputer Center (on which
the students ran MPI and multiprocessor OpenMP). The course included 24 first-year
graduate students, of which 16 participated in the pilot study. Approximately 2/3 of the

 45

students were from the Computer Science Department and 1/3 from Mechanical and
Environmental Engineering.

The students did four individual assignments (as part of the instrumented pilot study).
They were:

a. A highly parallel Monte Carlo problem, the Buffon-Laplace needle (in MPI,
OpenMP, and Matlab*P).

b. A parallel sorting problem (in MPI and Matlab*P).

c. A discrete simulation problem, the game of Life (in MPI and OpenMP).

d. An irregular scientific kernel, sparse matrix-vector multiplication and conjugate
gradient iteration (in a mixture of MPI and Matlab*P).

The students also did term research projects in teams of two or three; the pilot study did
not collect productivity data on these projects.

In collaboration with the UMD team, we collected several kinds of data on the students'
productivity, including timestamps and source code at each compile, execution
timestamps, student-reported effort logs and reasons for recompiles, and pre- and post-
study questionnaires.

On the whole, the data collection went well, and we learned a great deal that will serve us
during next year's full study. Our ability to collect data on the remote systems at SDSC
was limited due to some (unrelated) security issues at the center and due to the
decommissioning of Blue Horizon and its mid-study replacement by DataStar.

3. Preliminary experiments to extend data collection and analysis techniques

At the end of the project, we were initiating the analysis of the data we collected. In
addition to the analysis being done by the Maryland team, we have started an experiment
to determine what can be learned by "replaying the entire programmer experience" -- that
is, by using the collected history of program updates and executions to recreate every
single test run that was done during development. This is a computationally intensive
experiment, but we are after all in the business of using high-performance computing to
answer research questions. Our first preliminary experiment is using heuristics to guess
the point in the programmer's workflow represented by each compile-and-run cycle. We
are planning to pursue this idea further during the coming months in collaboration with
the University of Maryland team.

4. Preparation and pre-pilot experiments with an HPC environment for use in the studies.

We are developing a novel HPC programming environment for inclusion in some of the
productivity studies. Our environment, called Matlab*P, is a flexible interactive

 46

environment that enables computational scientists and engineers to program high-
performance parallel computers. During the reporting period, we have developed support
for distributed irregular sparse matrix data and operations in Matlab*P, including a good
deal of infrastructure for combinatorial scientific computations. We have also made the
preliminary steps in the design of a global address space (GAS) data view that will
complement Matlab*P's existing data-parallel SIMD and task-parallel SPMD views and
increase the expressiveness of the language.

We used our prototype version of Matlab*P in the course assignments and projects in CS
240A in Spring 2004. Due to its preliminary nature we did not collect productivity data
on Matlab*P this time around, but we plan to do so during the next offering of CS 240A
in the full study.

PATENTS SUBMITTED IN REPORTING PERIOD:

none

PAPERS SUBMITTED AND PRESENTED IN REPORTING PERIOD:

Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng. "Star-P: High
productivity parallel computing." Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04).

John R. Gilbert and Viral Shah. "Graphs and sparse matrices in an interactive
supercomputing environment." Minisymposium talk presented at SIAM Annual Meeting,
2004.

Imran Patel and John R. Gilbert. "Grid*P: Interactive supercomputing on the grid with
Matlab." Presented at SIAM Conference on Parallel Processing for Scientific
Computing, 2004.

Viral Shah and John R. Gilbert. "Sparse matrices in Matlab*P: Design and
implementation." Accepted to 11th Annual International Conference on High
Performance Computing (HiPC 2004).

 47

Appendix G: Development Time Report from MIT

The Massachusetts Institute of Technology accomplished four principle objectives:

1. Developed strategy and materials for an HPC course to be included in the pilot study
2. Conducted a pilot study in an HPC course at UCSB
3. Performed preliminary experiments to extend data collection and analysis techniques
4. Prepared pre-pilot experiments within an HPC environment for use in the studies.

A brief synopsis of each accomplishment follows.

1. Developed strategy and materials for an HPC course to be included in the pilot study

During Fall 2003 we modified somewhat the syllabus of the MIT graduate course
18.337/6.338, for Spring 2004. The course is "Applied Parallel Computing" on modern
supercomputers. Topics include applications- oriented architectural issues, MPI,
OpenMP, parallel Matlab, and parallel numerical algorithms.

We had four goals:

a. The course has a distinctly applied and interdisciplinary character. It is a popular
course for first-year graduate students (Master's and PhD) in engineering and science.

b. We developed and improved upon several programming project assignments.
Implementations were to be done using three different models of computation: message-
passing (using MPI); shared-memory (using OpenMP); and novel (using our prototype
Matlab*P system).

c. We designed the course to facilitate quantification of the productivity of the students,
for the HPCS pilot study.

d. We put the course on the MIT opencourseware web page.

We kept the Singapore students informed as non-participants

2. Conducted a pilot study in an HPC course at MIT

Working with the UMD team, we conducted a pilot productivity study in 18.337/6.338
during the Spring semester, February to May 2004. We used the three technologies we
had planned, MPI, OpenMP, and Matlab*P. Our two primary computing platforms were
a 16 processor Beowulf cluster now three years old, and midway through the semester we
acquired a second Dell cluster.

 48

The students did three individual assignments (as part of the instrumented pilot study).

They were:

a. A highly parallel Monte Carlo problem, the Buffon-Laplace needle (in MPI, OpenMP,
and Matlab*P). (Same as Santa Barbara)

b. The grid of resistors problem (in openMP, MPI and Matlab*P).

c. A Laplace Equation Problem (in MATLAB*p, MPI and OpenMP optional).

The students also did term research projects in teams of one, two or three; the pilot study
did not collect productivity data on these projects. In collaboration with the UMD team,
we collected several kinds of data on the students' productivity, including timestamps and
source code at each compile, execution timestamps, student-reported effort logs and
reasons for recompiles, and pre- and post-study questionnaires.

On the whole, the data collection went well, and we learned a great deal that will serve us
during next year's full study. We had some problems with the move mid semester from
Technology Square to the Stata Center. Machines that had worked did not survive the
move so well. We had further breakdowns as well. This was statistically unusual when
compared with previous years.

3. Performed preliminary experiments to extend data collection and analysis techniques

At the end of the project, the analysis of the data we collected is only beginning. The
analysis is being led by the University of Maryland team.

4. Prepared pre-pilot experiments with an HPC environment for use in the studies.

We are developing a novel HPC programming environment for inclusion in some of the
productivity studies. Our environment, called Matlab*P, is a flexible interactive
environment that enables computational scientists and engineers to program high-
performance parallel computers. MATLAB*p is likely to go commercial very soon in the
form of Interactive Supercomputing. This will allow greater support possibilities and an
industrial strength environment.

We used our prototype version of Matlab*P in the course assignments and projects in
18.337/6.338 in Spring 2004. Due to its preliminary nature we did not collect
productivity data on Matlab*P this time around, but we plan to do so during the next
offering in the full study.

PATENTS SUBMITTED IN REPORTING PERIOD: none

 49

PAPERS SUBMITTED AND PRESENTED IN REPORTING PERIOD:

Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng. "Star-P: High
productivity parallel computing." Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04).

Parallel Matlab, doing It Right, Alan Edelman, Ron Choy. To be published. IEEE
Proceedings.

 50

Appendix H: Report from NGC

A Characterization of a Representative HPCS Benchmark for Intelligence Processing

Final Report

Prepared for Bob Lucas
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292

under USC Subcontract PO#080930

Robert G. Babb II
Angela Betker
Mark Coffey
Bruce Lenell
John Szaro

Northrop Grumman Mission Systems
17455 E Exposition Dr

MS AUC1/41
Aurora, CO 80017

Robert.Babb@ngc.com

Angela.Betker@ngc.com
Mark.Coffey@ngc.com
Bruce.Lenell@ngc.com
John.Szaro@ngc.com

21 June 2003

 51

1. INTRODUCTION

The "p" in the DARPA HPCS program [http://www.darpa.mil/ipto/research/hpcs/]
acronym stands not for "performance" but "productivity" ("High Productivity Computing
Systems"). High productivity is considered to result from a combination of:

• Performance: Improve the computational efficiency and performance of
critical national security applications

• Programmability: Reduce cost and time of developing HPCS application
solutions

• Portability: Insulate research and operational HPCS application software
from system specifics

• Robustness: Deliver improved reliability to HPCS users and reduce risk
of malicious activities

This study was undertaken as a first step in understanding the characteristics of
computationally intensive algorithms in one area of intelligence processing. Since this is
meant to be an unclassified report, of necessity most aspects of the domain can be
discussed only in somewhat general terms, and the specific algorithm chosen for study is
described mathematically, without discussion of its purpose, or where it fits into the
larger intelligence processing environment. The algorithm does represent a key link in
operational intelligence systems of critical national importance.

2. HIGH PERFORMANCE ALGORITHM DEVELOPMENT FOR THIS DOMAIN

In general terms, the following are some key characteristics of the way algorithms are
developed and implemented within one subset area of intelligence processing.

Programming Language: C or C++, although some areas are experimenting with Java,
especially for J2EE-style network programming and user interface support. There is also
some legacy code still running that was written in Fortran, Assembler, and other
languages.

Lifetime of a single application code: up to 20 years

Development Teams: usually between 2 and 15 people for any single algorithm or
application area.

Development Environment: The systems that these algorithms are part of are
themselves very large and distributed across dozens or hundreds of compute and data
servers. The end users of the systems are both local to the main processing chains, and
widely distributed geographically. Very high data rates must be supported for input, and
in some instances on output as well. The requirements (and changing requirements) for
these systems thus tend to stress whatever compute, data, and network capabilities exist
at any particular point in time, and this has a large impact on the way applications are

 52

developed, both for modifications to existing systems, and introduction of new types of
processing.

Development Approach: This can best be described as bursts of concentrated efforts
dealing with the "crisis of the moment". Continually "shoe-horning" applications onto
platforms tends to lead to complex, expensive to maintain code, and tends to work against
the HPCS "programmability" objective mentioned above. Because these systems are so
large, and also due to security considerations, individual programmers rarely have a good
understanding of the "big picture" that their piece fits into. This has two implications:

(1) Programmers tend to fall into "sub-optimization" traps while attempting to make
their part of the processing "ultra efficient" (at the expense of code simplicity, clarity, and
maintainability), and sometimes with negative impacts on the overall processing
effectiveness.

(2) Since there tends to be poor coordination, understanding and control of the overall
system architecture, system processing bottlenecks and imbalances can develop that must
be "worked around" with a great deal of (heroic) programming effort, which tends to
further complicate system and application program development efforts.

There is also a larger organizational effect on the way these systems have evolved, since
various parts of the processing are developed at various times by competing contractors
and sometimes for competing government organizations. This can have a further "sub-
optimizing" effect on the code bases on a larger scale than the individual programmer
sub-optimization mentioned above.

3. A REPRESENTATIVE (ABSTRACT) ALGORITHM

The algorithm described in this section has several interesting general characteristics.
First, the amount of computing required by the problem grows exponentially in the size
of the sets of elements processed. This means that an exhaustive computing approach is
not possible except in trivially small cases, and variants of the algorithm compete on how
well the heuristics they employ perform. Since the actual "answer" is in general not
known, it is not even possible to determine how well any of the heuristics perform
compared to "the answer" for a particular input data set.

The problem is a constrained set partitioning problem where the "hardest" constraint test
(Step 4 below) is only performed when the easier constraints have not been conclusive,
because it is computationally much more expensive (matrix operations on floating point
values) than the easier constraints. It is also the most powerful constraint in that it can
result in an answer that can be output immediately for further processing. This problem
is also a "soft" real-time problem in that there is a time value attached to any answers that
can be determined within, for example, 15 minutes, and any answers found after that time
are of rapidly decreasing value, and so are generally not computed. The current form of
the algorithm has been driven largely by this real-time constraint. More comprehensive
set partitioning approaches to the problem are also of considerable interest.

 53

Algorithm 1: Set Partitioning Under Constraints Including Nonlinear Least Squares

Let S be a totally ordered set of size 1,000 to 50,000 elements. The elements of S are
processed sequentially and individually. The algorithm terminates when all of the
elements of S have been processed.

The algorithm uses an undirected graph G whose vertices are subsets of S. If A and B
are subsets of S and vertices of G, then there is an edge connecting vertices A and B in G

if and only if A ∩ Β ≠ ∅ (Edge Property). There is also a total ordering on the vertices
of G.

Let s[i] be the next element of S to be processed. The algorithm traverses the vertices of
G in order, and for each vertex v[j] computes the value of a function f that determines the
next step the algorithm will take. The function f has the form

f: S × G → {0,1,2}
and the algorithm behavior in response to the various possible values returned by f is:

f(s[i],v[j]) = 0 : Move to the next vertex v[j+1] and continue by computing f(s[i],v[j+1]).

 = 1 : Duplicate the vertex v[j] creating a new vertex, add element s[i] to the

new vertex, add the new vertex immediately before v[j] in the ordering
of vertices of G, renumber the vertices of G, recompute the edges of G to
maintain the Edge Property, and continue with f(s[i],v[j+2]).

 = 2 : Add s[i] to v[j], recompute the edges of G to maintain the Edge Property,

delete the immediate neighbors of v[j], recompute the edges of G to
maintain the Edge Property after the deletion, and continue by
computing f(s[i+1], v[1]) i.e. processing of element s[i] is complete.

If the entire graph G is traversed and no function evaluation of f has returned 2, create a
new vertex v[n] in G (last in the ordering of vertices) consisting of s[i].

The behavior of the function f is as follows. f is evaluated in four steps of increasing
computational complexity and decreasing probability of being executed.

Step 1: (Relative probability of returning f = 0, vs. proceeding eventually to Step 4:
1,000,000).
Computational Complexity: Small numbers of comparisons of small character strings
(<= 10 strings of <= 10 characters).
Result: Either return f = 0 or proceed to Step 2.

Step 2: (Relative probability of returning f = 0, vs. proceeding eventually to Step 4:
10,000).

 54

Computational Complexity: Lookups of thresholds in tables of 100-1,000 entries in
memory, scalar differences and comparisons against those thresholds.
Result: Either return f = 0, or proceed to Step 3.

Step 3: (Relative probability of returning f = 0, vs. proceeding to Step 4: 100)
Computational Complexity: Matrix sums and multiplications of small matrices (order
≤ 10),
Result: Either return f = 0, or proceed to Step 4.

Step 4: (Relative probability of being executed: 1).
Computational Complexity: Nonlinear least squares for ~30 iterations on matrices of
order ≤ 10. Multiple matrix operations of order ≤ 30. Lookups against significantly
larger tables in memory per iteration, compared to the tables in Step 2. All matrices and
arithmetic operations are on double precision floating point values.
Result: Return f = 0, 1, or 2.

4. FURTHER WORK

The algorithm described above represents only one of several critical computationally
intensive algorithms in this sub-area of intelligence processing. Consideration should be
given to developing a similar unclassified characterization and concrete benchmarks for
those algorithms as well.

